Tangential-displacement and Normal-normal-stress Continuous Mixed Finite Elements for Elasticity
نویسندگان
چکیده
In this paper we introduce new finite elements to approximate the Hellinger Reissner formulation of elastictiy. The elements are the vector valued tangential continuous Nédélec elements for the displacements, and symmetric, tensor valued, normal-normal continuous elements for the stresses. These elements do neither suffer from volume locking as the Poisson ratio approaches 12 , nor suffer from shear locking when anisotropic elements are used for thin structures. We present the analysis of the new elements, discuss their implementation, and give numerical results.
منابع مشابه
A New Family of Mixed Finite Elements for Elasticity
In this thesis, we introduce a new finite element method to discretize the equations of elasticity. It is analyzed thoroughly both in the infinite-dimensional and in the discrete setting, where finite element schemes of arbitrary order are presented. As the main result of this work, we prove that the new method is locking-free with respect to volume and shear locking, i.e that it is applicable ...
متن کاملThe TDNNS method for Reissner–Mindlin plates
A new family of locking-free finite elements for shear deformable Reissner-Mindlin plates is presented. The elements are based on the "tangential-displacement normal-normal-stress" formulation of elasticity. In this formulation, the bending moments are treated as separate unknowns. The degrees of freedom for the plate element are the nodal values of the deflection, tangential components of the ...
متن کاملOn the Displacement-Stress Continuous Finite Elements
For the analysis of composite media, three different compatible and mixed finite element formulations are presented which apriori enforce the continuity of stresses as well as displacements at the element interfaces. The formulations are applied for the analysis of hi-material interfaces in two problems often encountered in the field of orthopaedic biomechanics, that is the fixation analysis in...
متن کاملNonconforming Mixed Elements for Elasticity
We construct first order, stable, nonconforming mixed finite elements for plane elasticity and analyze their convergence. The mixed method is based on the Hellinger– Reissner variational formulation in which the stress and displacement fields are the primary unknowns. The stress elements use polynomial shape functions but do not involve vertex degrees of freedom.
متن کاملExplicit mixed strain-displacement finite elements for compressible and quasi-incompressible elasticity and plasticity
This paper presents an explicit mixed finite element formulation to address compressible and quasi-incompressible problems in elasticity and plasticity. This implies that the numerical solution only involves diagonal systems of equations. The formulation uses independent and equal interpolation of displacements and strains, stabilized by variational subscales (VMS). A displacement sub-scale is ...
متن کامل